Differential Equations

Carson West

Calc home

Differential Equations

I. Introduction to Differential Equations

II. Solving Differential Equations: Separation of Variables ***

Example:

Solve the differential equation $ \frac{dy}{dx} = xy $ with the initial condition $ y(0) = 2 $ .

  1. Separate: $ \frac{dy}{y} = x dx $

  2. Integrate: $ \int \frac{dy}{y} = \int x dx + C $ which gives $ \ln|y| = \frac{1}{2}x^2 + C $

  3. Solve for y: $ e^{\ln|y|} = e^{\frac{1}{2}x^2 + C} $ , so $ |y| = e^{\frac{1}{2}x^2}e^C $ . We can write $ y = Ae^{\frac{1}{2}x^2} $ , where $ A = \pm e^C $ .

  4. Apply Initial Condition: $ y(0) = 2 $ , so $ 2 = Ae^{\frac{1}{2}(0)^2} = A(1) $ . Therefore, $ A = 2 $ .

    The particular solution is $ y = 2e^{\frac{1}{2}x^2} $ .

Integration Techniques Absolute Values in Integration Solving for C

III. Slope Fields ***

Equilibrium Solutions Sketching on Slope Fields

IV. Exponential Growth and Decay ***