ICE Tables

Carson West

Equilibrium

ICE Tables

ICE tables are used to solve equilibrium problems. They stand for Initial, Change, and Equilibrium.

Format:

Reactant A Reactant B Product C
Initial $ x_A $ $ x_B $ $ x_C $
Change $ \Delta x_A $ $ \Delta x_B $ $ \Delta x_C $
Equilibrium $ x_A + \Delta x_A $ $ x_B + \Delta x_B $ $ x_C + \Delta x_C $

Where $ x_A $ , $ x_B $ , and $ x_C $ are the initial concentrations (or partial pressures) of A, B, and C respectively. $ \Delta x_A $ , $ \Delta x_B $ , and $ \Delta x_C $ represent the change in concentration (or partial pressure) during the reaction to reach equilibrium. The equilibrium concentrations are found by summing the initial and change values.

Example:

Consider the reaction: $ N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) $

Let’s say we start with 1.0 M $ N_2 $ and 1.5 M $ H_2 $ , and at equilibrium, we have 0.6 M $ NH_3 $ . We can set up the ICE table as follows:

$ N_2 $ $ 3H_2 $ $ 2NH_3 $
Initial 1.0 M 1.5 M 0 M
Change $ -x $ $ -3x $ $ +2x $
Equilibrium $ 1.0 - x $ $ 1.5 - 3x $ $ 2x $

Since we know the equilibrium concentration of $ NH_3 $ is 0.6 M, we can solve for $ x $ :

$ 2x = 0.6 M $ $ \implies x = 0.3 M $

Therefore, the equilibrium concentrations are:

$ [N_2 = 1.0 - 0.3 = 0.7 M $ $ [H_2 = 1.5 - 3(0.3) = 0.6 M $ $ [NH_3 = 0.6 M $

Important Considerations:

Equilibrium Calculations Le Chateliers Principle