u-Substitution
This is the most fundamental technique for simplifying integrals. It involves substituting a part of the integrand with a new variable, $ u $ , to make the integral easier to solve.
Steps:
- Choose a suitable substitution, $ u = g(x) $ , where $ g(x) $ is a part of the integrand.
- Find $ du = g’(x) dx $ .
- Rewrite the integral in terms of $ u $ and $ du $ .
- Integrate with respect to $ u $ .
- Substitute back $ x $ for $ u $ in the result.
Example: $ \int x(x^2 + 1)^3 dx $
Let $ u = x^2 + 1 $ , then $ du = 2x dx $ , so $ x dx = \frac{1}{2} du $ .
The integral becomes: $ \int u^3 \frac{1}{2} du = \frac{1}{8}u^4 + C = \frac{1}{8}(x^2 + 1)^4 + C $